Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
ACS Appl Mater Interfaces ; 14(25): 28527-28536, 2022 Jun 29.
Article in English | MEDLINE | ID: covidwho-1900420

ABSTRACT

Rapid antigen detection tests are urgently needed for the early diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The discovery of a binder with high affinity and selectivity for the biomarkers presented by SARS-CoV-2 is crucial to the development of the rapid antigen detection method. We utilized the surface biopanning to identify a peptide binder R1 from a phage-displayed peptide library consisting of 109 independent phage recombinants. The R1 peptide exhibited high-affinity for specific binding with the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein with a dissociation constant KD of (7.5 ± 1.9) × 10-10 M, which maintained high binding affinity with the RBD derived from Gamma, Lambda, Delta, and Omicron variants. The composition and sequence dependence of binding characteristics in R1-RBD interactions was revealed by the binding affinity fluctuations between RBD and the scrambled sequences or single-site mutants of R1. The R1-functionalized gold nanoparticles possessed concentration-dependent response to RBD and selectivity over bovine serum albumin and human serum albumin. The peptide binder R1 shows the potential to be used for constructing a rapid detection method for the early-stage diagnostics for SARS-CoV-2.


Subject(s)
COVID-19 , Metal Nanoparticles , Antibodies, Viral , Binding Sites , COVID-19/diagnosis , Gold , Humans , Peptide Library , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL